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ABSTRACT 
 
 

The United States Marine Corps’ ability to wage war 

and its warfighting effectiveness rely heavily on the 

availability of its tactical ground equipment.  The Marine 

Corps optimizes the warfighting availability of its 

tactical ground equipment in its depot-level repair plan, 

which commits $450 million over a six-year horizon.  

Currently, small changes (for example, budget) to the input 

to this model produce non-intuitive revisions that are 

needlessly disruptive.  The Marine Corps Materiel Command 

(MATCOM) recognizes this problem and has asked for 

enhancement of their current model to include persistent 

features.  We show that turbulence can be reduced at little 

cost in warfighting availability.  We also investigate an 

approximate, but very fast heuristic in lieu of 

mathematical optimization to solve this problem.  A simple 

greedy myopic heuristic quickly produces nearly-optimal 

advice to the depot-level planning problem. 
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EXECUTIVE SUMMARY 
 

 

The United States Marine Corps maximizes the 

warfighting availability of its tactical ground equipment 

through depot-level repair activity.  The system that plans 

such activities currently produces too many expensive 

revisions after the Marine Corps publishes a maintenance 

plan and subsequent small input changes arise.  The Marine 

Corps Materiel Command (MATCOM) recognizes this problem and 

has asked for enhancement to correct it.  We suggest 

several changes to the current model to minimize the number 

of changes to an already-published legacy plan and 

investigate an approximate heuristic in lieu of 

optimization to solve this problem.  Our simple myopic 

heuristic quickly produces nearly optimal advice for the 

depot-level planning problem without the requirement of 

expensive optimization software.   

Currently, the Marine Corps uses the Dynamic Equipment 

Repair Optimization (DERO) model, an integer linear 

program, to suggest a maintenance plan.  DERO optimizes 

multi-year, depot-level maintenance plans that maximize the 

aggregate value of available equipment while ensuring that 

an adequate number of each type asset is available when 

needed and that annual budget limits are observed.  DERO 

has been used since 1998 to develop the Program Objective 

Memorandum (POM), which ultimately determines the overall 

depot-level funding for the Marine Corps.   

The depot-level managers encounter a problem when they 

incorporate updated budget information into DERO.  Budget 

projections for depot-level maintenance fluctuate 

  xv



regularly.  Additional maintenance funds are granted, or, 

perhaps more likely, funds are rescinded in order to 

support other Marine Corps programs. 

When the budget projection changes and DERO 

incorporates this change, a revised maintenance plan can be 

significantly different from the already-published legacy 

plan.  These non-intuitive inconsistencies necessitate 

major revisions to already-published legacy plans.   

We suggest some modifications to DERO to ensure that 

legacy plans are not revised needlessly.  By incorporating 

a published legacy plan as input to the model, we encourage 

a revision to remain close to the legacy plan by penalizing 

deviations from the legacy plan.  Our results show the 

effectiveness of these enhancements to DERO, improving the 

face validity of plans.  We also show how restricting plans 

to retain legacy features affects the overall warfighting 

readiness of a revised maintenance plan. 

In its current form, DERO requires someone experienced 

in modeling and an algebraic modeling language to 

understand and implement the changes we suggest.  DERO also 

requires an expensive Generalized Algebraic Modeling System 

(GAMS) CPLEX integer linear programming solver to generate 

its proposed maintenance plan.   

We provide a heuristic planning tool that is easy to 

use and can alleviate the above limitations.  Our heuristic 

is implemented with EXCEL and uses Visual Basic to solve 

the depot-level planning problem.  We show that this tool 

works on a simplified planning problem and can be trusted.  

Our myopic heuristic quickly solves the DERO planning 

problem and produces a suggested maintenance plan with the 
  xvi



approximate warfighting readiness of formally optimized 

DERO. 
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I. INTRODUCTION 

A.   DEPOT-LEVEL MAINTENANCE PLANNING 

The United States Marine Corps’ ability to wage war 

and its warfighting effectiveness rely heavily on the 

availability of its tactical ground equipment.  However, 

maintenance funding for ground depots regularly falls short 

of the full amount required to overhaul all of the 

unserviceable equipment.  Therefore, the Marine Corps must 

prioritize its depot-level funding to ensure the proper mix 

of equipment is available for its warfighters. 

In the past, the Depot Level Maintenance Program 

(DLMP) program manager manually prioritized all of the end 

items in the Marine Corps ground inventory requiring depot-

level maintenance.  Regular maintenance conferences 

reviewed a rotation schedule, which plans for the 

modification, overhaul, and/or service life extension of 

each item in a fleet of equipment exactly once during a 

planning horizon [MATCOM, 2002a].  Other considerations 

include procurements, modification plans, estimates of 

unserviceable returns to the depots, and current and 

expected operational requirements. 

A team of maintenance experts was responsible for 

assimilating this information and prioritizing the hundreds 

of items competing for limited repair resources.  After a 

period of several weeks, this team eventually decided on a 

subset of items to fund.  While this provided prioritizing, 

it often left many unfunded items in a critically short 

posture. 
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In order to correct this planning deficiency, the 

Marine Corps developed the Dynamic Equipment Repair 

Optimization (DERO) model.  This model optimizes yearly 

depot-level maintenance activities across a six-year 

planning horizon while adhering to annual budget 

constraints.  This model will be described in Chapter II. 

Since 1998, the United States Marine Corps Material 

Command (MATCOM) has used this model to prepare its Program 

Objective Memorandum (POM) and plan its depot-level 

maintenance.  Depot managers closely follow DERO’s 

suggested maintenance plan for the first fiscal year or two 

in the planning horizon and incorporate it into their final 

maintenance plan.   

B.   DEALING WITH CHANGES 

The depot-level managers encounter a problem when they 

incorporate updated budget information into DERO.  Budget 

projections for depot-level maintenance fluctuate 

regularly.  Additional maintenance funds are granted, or, 

perhaps more likely, funds are rescinded in order to 

support other Marine Corps programs. 

When a budget projection changes and DERO incorporates 

this change, the new revised maintenance plan can be 

significantly different from a legacy plan.  These non-

intuitive inconsistencies between suggested plans can 

result in major revisions to an already-published legacy 

plan.   

Unfortunately, mathematical programs have a well-

deserved reputation for amplifying small input changes into 

significantly different solutions.  An optimized plan that 
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retains many of the features of an already-published legacy 

plan is much more managerially acceptable.   

 

C.   A SOLUTION FOR A PERSISTENCE PROBLEM 

Brown, Dell, and Wood [1991] observe persistence 

problems in real-world applications when using 

optimization-based decision support and suggest several 

ways of mitigating the amount of turbulence between 

solutions.  They describe how to encourage a revised 

optimal solution to retain features of a legacy optimal 

solution and define this idea as “persistence” between 

solutions.  Using the techniques described in their 

article, we demonstrate how to incorporate persistence in 

DERO and show its effectiveness when using this new 

formulation with typical budget changes. 
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II. RELATED RESEARCH 

A.  LITERATURE ON PERSISTENCE 

Much of the literature on optimization describes 

theory and models of mathematical programming.  The design 

and initial prototypic application of an optimization model 

takes precedence in publications.  On the other hand, 

continued real world use of these models receives little 

attention. 

Brown, Dell, and Wood [1991] explain the lack of 

attention to persistence with the following reasons: 

1. Most papers tend to discuss new applications but 

persistent problems arise only after a model has 

been used for some time.  This was the case with 

DERO. 

2. Modelers tend to write papers.  Therefore, they tend 

to focus on theoretical issues and ways to obtain 

optimal solutions. 

3. Everyone deals with persistence in some way, but 

nobody admits it.  Most modelers end up fixing 

variables and no one is proud of this sort of 

workaround. 

They illustrate various methods of incorporating 

persistence through a series of case studies. 

B.  CASE STUDIES 

Brown, Dell and Wood [1991] describe the following 

case studies in order to show optimization models that have 

exhibited persistence problems and some of the methods used 

to encourage persistence: 

  5 



1.  Scheduling Coast Guard Cutters 

The First United States Coast Guard District uses 

Cutter Scheduler (CutS) to assign 16 cutters to weekly 

patrols, maintenance and training assignments over three 

months while minimizing total transit time.  When changes 

arise in, for instance, the availability of a cutter, 

persistent solutions appeal when revising an already-

published legacy schedule. 

Each binary assignment variable in this model is 

encouraged to retain the value it had in a previous 

solution.  The legacy value of each decision variable is 

converted into an elastic persistent variable.  Each 

persistent variable has a target value that it is 

encouraged to obtain and a linear penalty for any deviation 

from that target.  By using these elastic persistent 

variables, the authors show how changes to a revised 

quarterly schedule are reduced from 52 major changes to 

only 11.  

2.  Base Realignment and Closure Action Scheduler 

The United States Army uses an integer linear program 

called Base Realignment and Closure Action Scheduler 

(BRACAS) to assist it in closing and realigning missions 

for military installations.  This model maximizes the 

expected net present value of savings that the Army 

receives by scheduling closures and realignments across six 

years. 

In this case, ranged persistent constraints were used 

to provide upper and lower limits for each of four budget 

categories.  After publishing a legacy solution the prior 

year, the Army was able to incorporate improved schedule 
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revisions and produce an acceptable plan that addressed 

these revisions while staying within the specified 

acceptable persistent ranges.  Congress eventually approved 

this model’s revised plan. 

3.  Hamming Distance and Submarines 

Another case study describes a model that produces an 

optimal berthing plan for submarines.  By calculating a 

measure of the difference between solutions called the 

Hamming distance, the authors show how to incorporate a 

persistent incentive in the objective function.  Their 

results show an effective way to reduce the amount of 

arbitrary and non-intuitive turbulence between legacy and 

revised berthing plans. 

Using the techniques described in these three case 

studies, we will demonstrate how to incorporate persistence 

in the DERO model.  Our results will show the effectiveness 

of persistence after typical budget changes to DERO’s 

input. 
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III. DYNAMIC EQUIPMENT REPAIR OPTIMIZATION MODEL 
(DERO) 

A.   OVERVIEW 

The Dynamic Equipment Repair Optimization model 

optimizes multi-year, depot-level maintenance plans that 

maximize the aggregate value of available equipment while 

ensuring that an adequate number of each type asset is 

available when needed and that annual budget limits are 

observed.  DERO has been used since 1998 to develop the 

Program Objective Memorandum (POM), which ultimately 

determines the overall depot-level funding for the Marine 

Corps.   

DERO consists of two distinct models: the Rotations 

model and the Readiness model, each addressing a different 

aspect of depot-level maintenance [Goodhart, 1999].  The 

Rotations model produces a depot-level maintenance plan for 

equipment designated as a rotation program.  The Readiness 

model allocates the remaining resources on Inspect-and-

Repair-Only-As-Necessary (IROAN) and other programs.    

DERO first solves the Rotations model because 

rotations programs receive a higher priority.  This model 

maximizes the smallest single-year budget surplus across 

the time horizon of interest for all rotations programs.  

The Readiness model maximizes the resulting availability of 

ground equipment with the remaining resources. 
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B.   THE ROTATIONS MODEL  

1.   Rotations Model Description 

A rotations program is one that calls for the 

modification, overhaul, and/or service life extension of 

each item in a fleet of equipment exactly once during the 

six-year planning horizon.  The Rotations model is an 

integer linear program that determines the arrangement of 

multiple “once only” rotations programs that maximizes the 

smallest single-year, single-appropriation funding surplus 

across the specified planning horizon. 

The Rotations model takes as input a set of possible 

starting years and a set of possible ending years for a 

subset of all of the Table of Authorized Materiel Control 

Numbers (TAMCNs).  The model’s input also includes the 

minimum and maximum number that can be repaired for each 

TAMCN in this subset during each year.  This integer 

program then finds the optimal combination of starting and 

ending years as well as the annual number to repair for 

this subset of TAMCNs within the yearly budget constraints. 

 

2.   Rotations Model Formulation 

The Rotations model is as follows: 

Indices: 

f  Forces (appropriations): ACTIVE or RESERVE,  

t  Table of Authorized Materiel control number 

(TAMCN) (equipment type), e.g. D0209,  

v Possible years in which a rotation program could 

start, 
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w Possible years in which a rotation program could 

end, 

y  Years in the decision horizon (e.g. 2002, 2003, 

2004, …); 

Sets: 

T  TAMCNs t, 

R  Subset of T, TAMCNs required to undergo a 

rotation – e.g., R = {Axxxx}, 

tV  Possible starting years for TAMCN t rotation 

 -- e.g. Axxxx could start in 2002 or 2003, )( Rt∈

tW  Possible ending years for TAMCN t rotation -

- e.g. Axxx could end in 2004 or 2005, 

)( Rt∈

tVW  Set of possible rotation start-end year pairs for 

TAMCN t, {( , for example,  },:), tt WwVvwv ∈∈

for TAMCN Axxxx above, VWAxxxx = {(2002, 2004), 

(2002, 2005), (2003, 2004), (2003, 2005)}.  Each 

of these pairs represents the time during which a 

rotation program could be funded, 

,t yVW  Possible TAMCN t start-end year pairs including 

year y, i.e., {( , for example, 

VW

}:), wyvVWwv t ≤≤∈

Axxxx,2005 = {(2002, 2005), (2003, 2005)}; 

Data: 

,, , t ft fm m  Minimum and maximum number of TAMCN  

assets that can or must be rotated from 

force f in any year, 

Rt∈
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,f ybudget  Funding available to force f in year y, 

,t fq  Total quantity of TAMCN t assets required 

for rotation for f over all years, 

trcost  Cost per asset of TAMCN t in rotation in 

dollars; 

Variables: 

,f yDELTA  Dollar amount that force f has left over 

from its budget in year y, after paying for 

all rotated assets; if negative, force f is 

over-budget; 

, ,t f yRB  Number of TAMCN t assets funded by f for 

rotation in year y, 

, ,t v wP  Binary variable, which is set to 1 if TAMCN 

t rotation starts in year v and ends in year 

w, 0 otherwise, 

Z  Maximum number of dollars saved after paying 

for all rotations, by any force in any year 

(possible negative if over-budget); 

Formulation: 

Maximize Z      [1] 

Subject to 

, , , ,t t f y f y f y
t
rcost RB DELTA budget+ =∑    ,f y∀   [2] 

,f yZ DELTA≤       ,f y∀   [3] 

, ,

,, , , , , ,,
( , ) ( , )t y t y

t ft v w t f y t v wt f
v w VW v w VW

m P RB m P
∈ ∈

≤ ≤∑ ∑   [4]  , ,t R f y∀ ∈

  12 



, , ,t f y t f
y

RB q=∑      ∀ ∈  [5]  ,t R f

, ,
( , )

1
t

t v w
v w VW

P
∈

=∑      ∀ ∈  [6]  t R

, , {0,1,2,...}t f yRB ∈      ∀ ∈  [7] , ,t R f y

, , {0,1}t v wP ∈       ∀ ∈  [8] , ,t R v w

3.   Verbal Formulation 

The objective function [1] expresses the smallest 

single-year budget surplus across the time horizon of 

interest.   

Constraints: 

[2] Each budget constraint ensures that the funding 

spent on rotations programs plus DELTA equals the 

budget limit for each force and year. 

[3] Combined with the objective function, each 

constraint encourages the annual savings to be as 

large as possible. 

[4] Each constraint requires that quantities funded 

for any TAMCN are between the minimum and maximum 

allowed and only occur during the period the 

program is scheduled. 

[5] Each constraint requires that the total quantity 

funded for each TAMCN equals the quantity 

required for that force. 

[6] Each constraint ensures that each TAMCN has only 

one starting and ending year. 

[7] An integer decision is required. 
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[8] A binary decision is required. 

 

C.   THE READINESS MODEL 

1.   Readiness Model Description 

The Readiness model incorporates a plan from the 

Rotations model and maximizes the resulting availability of 

ground equipment with the remaining resources.  This model 

uses a readiness score to represent the availability of 

each TAMCN.  Using this readiness measure, the model 

maximizes a weighted sum of the readiness scores of all 

TAMCNs. 

In this model, each TAMCN is assigned a war material 

requirement, which represents the total number of assets 

authorized to all Marine Corps organizations and in 

sustainment stocks.  The availability of a TAMCN in a given 

year is determined by using a ratio of the number of Ready-

For-Issue (RFI) assets to its war material requirement.  

This ratio is referred to as an E-rating. 

The Readiness model uses a piecewise linear function 

of an E-rating to determine a readiness score for each 

TAMCN.  The higher the score, the better the readiness for 

that TAMCN.  Negative scores represent TAMCNs with ratio of 

less than 0.7, and the Readiness model penalizes these.  

This readiness score for each TAMCN is an important part of 

the model’s objective function. Figure 1 shows how the 

score is calculated. 
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Min =
70%

100%
0

1

E-rating
(fraction of assets of this type that are serviceable)

Penalize falling 
short of minimum 
numbers needed

Per-unit return
depends on
availability

No value is gained by
repairing excesses

READINESS
SCORE

Objective function multiplies vertical axis by the value 
of each TAMCN to establish relative importance of funding 

 

Figure 1.   Maximizing a Readiness Score.  
The objective function uses the score for a given TAMCN 
to represent its warfighting readiness. The score is 
calculated by using a piecewise linear function similar 
to the one shown here.   

 

The other important aspect of this model’s objective 

function is the warfighting value of each TAMCN, 

representing the relative importance (or weighted 

importance) of that TAMCN as compared to other TAMCNs.  The 

objective function expresses the sum of the readiness score 

of each TAMCN multiplied by its warfighting value.   

In order to keep track of RFI and Not-Ready-For-Issue 

(NRFI) equipment quantities each year, a flow structure 

similar to the one in Figure 2 is employed.  The RFI 

quantity for a TAMCN is increased by either repairing some 

of its NRFI assets in the depot or by the addition of newly 
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issued items.  RFI quantities decrease according to the 

estimated number of failures (or returns) each year. 

 

 

 

YEAR
y

YEAR 
y - 1 

YEAR 
y + 1 

READY-FOR- 
ISSUE 

NOT 
READY-FOR- 

ISSUE 

NEW 
ISSUES 

FUND FUNDFUND
RETURNS 

WASHOUTS WASHOUTS WASHOUTS 

NEW
ISSUES

NEW 
ISSUES 

RETURNS RETURNS

 

Figure 2.   RFI and NRFI flow in the Readiness 
Model.   
Quantities of new issues and unserviceable returns are 
the inputs for the model.  Each vertical arrow labeled 
FUND corresponds to a decision variable in the model 
and incurs a specific cost for repairing each TAMCN. 

 

The Readiness model is solved as an integer linear 

program for the first three years.  The model relaxes 

integer requirements in later years.  For a more detailed 

description of this model, see Goodhart [1999]. 
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2.   Readiness Model Formulation 

The Readiness model is as follows: 

Indices: 

f  Forces (appropriations): ACTIVE or RESERVE, 

s  Line segments bounding the objective function,  

t  Table of Authorized Materiel Control Number 

(TAMCN) (equipment type),  

v Possible year in which a rotation program could 

start, 

w Possible years in which a rotation program could 

end, 

y  Years in the decision horizon (e.g. 2002, 

2003,…); 

Sets: 

C  TAMCNs in “screening programs” funded by depot-

maintenance accounts, or lump-sum payments 

denoted by unique TAMCNs indicating mandatory 

payment of a particular amount by these accounts, 

R  Subset of T, TAMCNs required to undergo a 

rotation, 

T  TAMCNs t, 

,t yVW  Possible TAMCN t start-end year pairs including 

year y, i.e., {( ; }:), wyvVWwv t ≤≤∈

Data: 

β  Discount factor to emphasize near-term years 

, ( 1β < )
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,f ybudget  Funding available to force f in year y, 

0tdspare  Starting number of unstratified (excess) 

NRFI assets of TAMCN t, 

ticost  Cost for “inspect and repair only as 

necessary” (IROAN) per asset of TAMCN t, 

sintcpt  Vertical intercept of segment s, in 

warfighting readiness units, 

,t yissue  Number of TAMCN t assets newly procured in 

year y, 

tpen  Per-asset shortage cost for failing to meet 

rtgt (readiness target) for TAMCN t, 

2tpen  Per-unit (elastic) penalty for adjusting 

initial RFI quantity, 

trcost  Cost per asset of TAMCN t in rotation 

(rebuild, modification, SLEP etc.), 

, ,t f yrtgt  Target availability percentage of TAMCN t at 

force f in year y, 

,t fsbl  Starting number of not-ready-for-issue 

(NRFI) assets of TAMCN t at force f, 

sslope  Slope of segment s in warfighting readiness 

units per E-rating, 

,t fsrfi  Starting number of RFI assets of TAMCN t at 

force f, 
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t, f,ytilim  Upper bound on number of turn-ins of TAMCN t 

from f in y, 

0tuspare  Starting number of unstratified (excess) RFI 

assets of TAMCN t, 

, ,t f yusr  Unserviceable returns of t from f in y, 

exclusive of specific assets demanded for 

rotation,  

tvalue  Warfighting value of TAMCN t as determined 

by CG, MCCDC (S&A Division), 

, ,t f ywmr  War materiel requirement of t at f in y, 

oy   First year in decision horizon; 

Fixed variables (optimal values determined by 

Rotations and used here as data): 

*
, ,t f yRB  Number of TAMCN t assets funded by f for 

rotation in year y, 

*
, ,t v wP  Binary variables set to 1 if TAMCN t 

rotation starts in year v and ends in year 

w, 0 otherwise, 

Variables: 

,t fCHEAT  Nonexistent TAMCN t assets stratified to f 

at beginning of horizon to account for poor 

forecasting, 

, ,t f yDEFIND  Binary variables set if f is short of its 

allowance (wmr) of t at end of y, 
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, ,t f yFLOAT  Quantity of RFI assets of t stratified to f 

in y (new or formerly excess), 

,t yISNRFI  In-stores (depot) NRFI quantity of t and end 

of year y, 

,t yISRFI  In-stores (depot) RFI quantity of t at end 

of year y, 

, ,t f yNRFI  Quantity of TAMCN t NRFI assets stratified 

to f at end of year y, 

, ,t f yRC  Quantity of TAMCN t RFI assets recalled for 

rotation from f at beginning of y, 

, ,t f yRFI  Quantity of TAMCN t RFI assets stratified to 

f at end of year y, 

, ,t f yRPR  Quantity of TAMCN t assets funded under 

IROAN for f in y, 

, ,t f ySCORE  Readiness score of TAMCN t for f in y, 

, ,t f ySHORT  Shortfall of TAMCN t RFI assets stratified 

to f at end of y with respect to 

availability target, 

, ,t f ySTRN  Quantity of NRFI TAMCN t assets re-

stratified to f in y (paper-redistributed 

excess NRFI), 

, ,t f yTEDEF  Difference between wmrt,f,y and quantity of t 

stratified to f at end of y (in any 

condition), 
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, ,t f yTIS  Quantity of TAMCN t RFI assets removed from 

stratification to f in y, 

, ,t f yTIU  Quantity of TAMCN t NRFI assets removed from 

stratification to f in y without being 

repaired; 

Formulation: 

Maximize 

0
, , , , ,

, , ,

( )y y
t t f y t t f y t t f

t f y t f

value SCORE pen SHORT pen CHEATβ − − −∑ ∑ 2      [1] 

Subject to 

*
, , , , ,t t f y t t f y f y

t R t R
icost RPR rcost RB budget

∉ ∈

+ ≤∑ ∑    ,f y∀    [2] 

, ,
, ,

, ,

t f y
t f y s s

t f y

RFI
SCORE intcpt slope

wmr
≤ +     [3]  , , ,s t C f y∀ ∉

, , ,0t y t t f y t f y
f f

INSRFI dspare TIU STRN= + − , ,∑ ∑    [4] 0 ,t C y y∀ ∉ =

, , 1 , ,t y t y t f y t f y
f f

ISNRFI ISNRFI TIU STRN−= + − , ,∑ ∑      ∀ ∉  [5] 0 ,t C y y>

, , , , , , 00  ,t y t t y t f y t f y
f f

ISRFI uspare issue FLOAT TIS t C y y= + − + ∀ ∉ =∑ ∑  [6] 

, , 1 , , , , , 0    ,t y t y t y t f y t f y
f f

ISRFI ISRFI issue FLOAT TIS t C y y−= + − + ∀ ∉ >∑ ∑  [7] 

( )
,

*
, , , , , ,( , )

, ,

, , , , , , , ,

1
t y

t f t f y t v w t f yv w VW
t f y

t f y t f y t f y t f y

sbl usr P RC
NRFI

RB RPR TIU STRN
∈

 + − += 
 − − − +

∑ ,
      

0 , ,t C f y y∀ ∉ = [8] 
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( )
,

*
, , 1 , , , , , ,( , )

, ,

, , , , , , , ,

1
t y

t f y t f y t v w t f yv w VW
t f y

t f y t f y t f y t f y

NRFI usr P RC
NRFI

RB RPR TIU STRN

− ∈
 + − += 
 − − − +

∑
     

0 , ,t C f y y∀ ∉ > [9] 

( )
,

*
, , , , ,( , )

, ,

, , , , , , , , , ,

1
t y

t f t f t f y t v wv w VW
t f y

t f y t f y t f y t f y t f y

srfi CHEAT usr P
RFI

RC RB RPR TIS FLOAT
∈

 + − −= 
− + + − +

∑

t C∀ ∉

,



    

 [10] 0 , ,f y y=

( )
,

*
, , , , , , ,( , )

, ,

, , , , , , , , , ,

1
t y

t f y t f t f y t v wv w VW
t f y

t f y t f y t f y t f y t f y

RPR CHEAT usr P
RFI

RC RB RPR TIS FLOAT
∈

 + − −= 
− + + − +

∑
    

0 , ,t C f y y∀ ∉ >  [11] 

, , , , , , , ,t f y t f y t f y t f yRFI rtgt wmr SHORT≥ −            [12] , ,t C f y∀ ∉

, , , , , ,t f y t f y t f yTEDEF DEFIND wmr≤           [13] , ,t C f y∀ ∉

, , , , , , , ,(1 )t f y t f y t f y t f yTIU TIS DEFIND tilim+ ≤ −           [14] , ,t C f y∀ ∉

, , , , , , , ,t f y t f y t f y t f yNRFI RFI TEDEF wmr+ + ≥               [15] , ,t C f y∀ ∉

,

*
, , , , , ,

( , )

1
t y

t f y t f y t v w
v w VW

RPR usr P
∈

 
≤ −

 
∑                         [16]  ,t y∀

*
, , , ,t f y t f yRC RB≤                           [17] , ,t R f y∀ ∈

, , , ,t f y t f yRPR usr=                          [18] , ,t C f y∀ ∈

, , 1t f ySCORE ≤                 ∀     [19]  , ,t f y

, , {0,1,2,...}t f yRPR ∈                    ∀     [20]  , ,t f y

, , {0,1}t f yDEFINED ∈                           ∀     [21]  , ,t f y
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, , , , , , , ,, , ,t f y t f y t f y t f yFLOAT NRFI RC RFI ≥ 0

0

            ∀     [22]  , ,t f y

, , , , , , , , , ,, , , ,t f y t f y t f y t f y t f ySHORT STRN TEDEF TIS TIU ≥     ∀     [23]  , ,t f y

, 0t fCHEAT ≥                                ∀      [24]  ,t f

, 0t yISRFI ≥                                  ∀      [25]  ,t y

3.   Verbal Formulation 

The objective function [1] expresses the weighted sum 

of the readiness score less penalties associated with 

failing to meet the target availability.   

Constraints: 

[2] Each budget constraint ensures budget limits are 

respected for each force and year. 

[3] Each constraint calculates the readiness score 

for each TAMCN. 

[4-5] When combined, these constraints keep track of 

in-stores NRFI assets across planning years. 

[6-7] When combined, these constraints keep track of 

in-stores RFI assets across planning years.  

[8-9] When combined, these constraints keep track of 

stratified NRFI assets over planning years. 

[10-11] When combined, these constraints keep track of 

stratified RFI assets over planning years. 

[12] Each elastic constraint is used to encourage 

minimum readiness; each shortfall (SHORT) is 

penalized in the objective function. 

[13-15] Together, these constraints prevent arbitrary 

redistribution of assets. 
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[16] Each constraint limits the number of assets 

funded for repair to be less than or equal to the 

number of unserviceable returns. 

[17] Each constraint provides an upper bound on assets 

that can be recalled. 

[18] Each constraint ensures that screening programs 

are funded. 

[19] Each constraint provides an upper bound on the 

readiness score. 

[20] An integer decision is required. 

[21] A binary decision is required. 

[22-25] A non-negative decision is required. 
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IV. TURBULENCE BETWEEN LEGACY PLANS AND REVISIONS  

A.  USING DERO TO PROVIDE A DEPOT-LEVEL MAINTENANCE PLAN 

The typical use of DERO to provide a maintenance plan 

is summarized with the following steps:  

1. All of the input is gathered. 

2. DERO is solved. 

3. The solution is published as the maintenance plan. 

4. Revised information becomes available and is 

incorporated into DERO. Typically, this is updated 

budget information.  

5. With this updated information, return to Step 2. 

A revised maintenance plan often varies greatly from 

an already-published legacy plan.  The depot-level planners 

complain that a revised maintenance plan is too different 

from a legacy plan.  This non-intuitive inconsistency 

between legacy and revised plans results in major revisions 

to the already-published legacy plan.  Ultimately, DERO 

could lose its credibility to produce an optimal 

maintenance plan for its users.  

B.   MAJOR AND MINOR CHANGES 

Changes between solutions are categorized here as 

major changes and minor changes.  A major change is the 

complete cancellation of a published repair program or the 

suggested start-up of a new program in a given fiscal year 

for a given TAMCN.   A minor change occurs when the number 

of assets to be repaired changes within a fiscal year for a 
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TAMCN, but the TAMCN is neither completely cancelled nor 

suggested for a new start-up. 

C.   ILLUSTRATING TURBULENCE AFTER A BUDGET CHANGE 

We solve DERO with an original data set [MATCOM, 

2002b].  The projected budgets for the active forces are as 

follows:  

Year Budget (millions) 

2002 $105.6 

(Reduced to $104.1) 

2003 $109.9 

2004 $73.3 

2005 $75.9 

2006 $76.7 

2007 $78.1 

Table 1.  An original (and revised) budget projection.   
After publishing an original maintenance plan, depot 
managers must revise plans due to a $1.5 million 
budget reduction in FY2002.    

 

The budget reduction in Table 1 reflects a 1.4% 

decrease in the first fiscal year of this six-year set and 

is the only change to the input data.  When we compare the 

legacy plan to the revised plan, we realize that DERO 

suggests a revision that requires 20 major changes and 36 

minor changes to the already-published legacy maintenance 

plan.  The changes to the legacy plan are shown in Table 2. 
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  2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007
A0010 B0635 -2 2 E0726
A0043 -3 -3 B0730 -3 -36 0.3 38.7 E0727 1 
A0966 B1082 E0942
A1260 -1 1 B1226 E0946
A1440 B1298 -1 E0947
A1500 B1315 -2 2 E0948
A1503 B1580 -1 E0949
A1530 B2464 E0950
A2306 B2482 E0960 -8 -128 1 135
A2635 -1 B2685 -4 E0961 -4 
A7005 -1 C2032 -17 E0980 -37 21.8 15.2
A7025 D0080 E0998 -1 -20 21
A7035 D0105 E1037
A7037 D0209 E1251 -12 -2 14
A7052 D0860 2 -1.9 E1313
A7055 -4 D0876 E1441 -1 3 2 -4
A7058 D0877 E1460
A7072 D0878 E1475
A7500 D0879 E1836
A7590 D0880 -82 54.2 27.8 E1888 -1 1 -0.93 -0.58 -0.69
B0001 D1072 E3196
B0114 -1 1 D1134 1 -1 A0000
B0395 D1212 E0000
B0443 E0180 -11 11 E0001
B0589 1 -0.9  

Table 2. Turbulence in DERO after a typical budget 
reduction.   
This table summarizes the TAMCNs that received funding 
in either the legacy or revised plan.  Only changes 
are shown in this table.  Positive numbers represent 
an increase in repairs for a given TAMCN in the 
revised plan while the negative numbers represent a 
decrease.  TAMCNs without any changes noted remain the 
same in both legacy and revised plans. Major changes 
are indicated with shaded cells. For example, DERO 
suggested a major change to A7055 in FY2002 by 
reducing the number to be repaired from four to zero 
while B1315 had two minor changes in FY2004 and 
FY2006.  On the other hand, A1503 remained unchanged 
between legacy and revised plans. 

 

D.   INCORPORATING PERSISTENCE 

A revised maintenance plan that retains many of the 

features of an already-published legacy plan is clearly 

more managerially acceptable.  By making DERO “remember” a 

legacy plan, we can encourage a revised plan to be less 

turbulent.  This encouragement is what is meant by the term 

persistence.   
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1.   Elastic Persistence for the Rotation and Repair 
Decision Variables  

When using elastic persistent variables, each decision 

variable has a target value that it is encouraged to 

obtain.  Typically, the target value of a decision variable 

is its value from a legacy plan.  A linear penalty in the 

objective function can be used to discourage any deviation 

from the target value. 

 

Target Value

Any deviation from the 
Target is penalized.

Penalty

 

Figure 3.   Illustrating an Elastic Persistent 
Variable.   
Each decision variable is given a target value and any 
deviation from that value is penalized with a linear 
penalty. 

 

We describe how to accomplish this in the Rotations 

model for the RBt,f,y decision variable, which represents the 

number to rotate of TAMCN t within force f in each year y 

within the specified starting and ending year.  

The target value of each decision variable will be the 

value of that decision variable from the legacy plan.  We 
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incorporate these values as a parameter in a persistent 

Rotations model: RBoldt,f,y.  This value is the target value 

for each TAMCN t within force f in year y in the revised 

plan. 

Incorporating elastic persistent variables in linear 

programming requires measuring the absolute value of the 

difference between the legacy value of a decision variable 

and its revised value.  Accomplishing the absolute value of 

a difference between two variables in linear programming 

requires the addition of two non-negative decision 

variables, e.g. Pdifft,f,y and Ndifft,f,y.  Pdifft,f,y 

represents the positive difference between a revised and a 

legacy plan, RBoldt,f,y, while Ndifft,f,y represents the 

absolute magnitude of the negative difference between these 

values. 

Additions and changes to the Rotations model to 

incorporate persistence are as follows: 

Added Parameters: 

, ,t f yRBold  Rotation decision (RB) from a legacy 

plan, 

RBpenalty  Linear penalty to encourage persistence 

in RB decision variables ($/change), 

Added Positive Variables: 

, , , ,,t f y t f yPdiff Ndiff  Positive and negative difference 

between legacy plans, RBoldt,f,y, and 

revision, RBt,f,y; 
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New Objective Function: 

Maximize  , , , ,
, ,

* ( t f y t f y
t f y

Z RBpenalty Pdiff Ndiff− )+∑             [1] 

Additional Constraints: 

, , , , , , , ,t f y t f y t f y t f yPdiff Ndiff RBold RB− = −               [2] , ,t R f y∀ ∈

, , , ,,t f y t f yPdiff Ndiff ≥ 0                           [3] , ,t R f y∀ ∈

The new objective function [1] now includes a penalty 

for every change in decision variables between legacy and 

revised plans.  Together, constraints [2] and [3] capture 

the change between legacy and revised plans for each 

decision variable.   

We incorporate the same reformulation for the RPRt,f,y 

decision variable in the Readiness model. 

2.   Hamming Penalty for a Rotation Program’s Starting 
and Ending Year 

Hamming distance measures the number of corresponding 

bits that differ between two binary decision variables 

[Hamming, 1986].  By incorporating Hamming distance into 

the objective function, turbulence between representative 

binary decision variables can be mitigated.  Brown, Dell, 

and Wood [1991] define this as a Hamming penalty.  This 

penalty is implemented by incorporating an elastic 

persistent constraint that discourages any change between 

legacy and revised plans. 

The Rotations model incorporates binary variables to 

indicate the starting year and ending year of a rotation 

program for a given TAMCN.  Encouraging similar starting 

and ending years for each TAMCN between legacy and revised 

plans is another important aspect of the Rotations model 
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requiring persistence.  As before, we use a parameter to 

capture a legacy value, Poldt,v,w, and use it as the target 

value for that decision variable in the revision. 

An additional constraint is used to measure the 

Hamming distance between legacy and revised plans.  A 

Hamming penalty is included in the objective function to 

reduce Hamming distance and thus encourage persistence in 

the Rotations model.  The remaining additions and changes 

are as follows:   

Additional Parameters: 

, ,t v wPold  Binary variables (Pt,v,w) from a legacy 

plan, 

Ppenalty Linear penalty to encourage persistence 

in P decision variables in revisions, 

Additional Variable: 

Pchanges  Number of changes between a revision, 

Pt,v,w, and legacy plan, Poldt,v,w; 

Final Objective Function: 

Maximize 

, , , ,
, ,

* * ( t f y t f y
t f y

Z Ppenalty Pchanges RBpenalty Pdiff Ndiff− − + )∑      [1] 

Additional Constraints: 

, , , ,

, , , ,
, , | 0 , , | 1

(1 )
t v w t v w

t v w t v w
t v w Pold t v w Pold

P P Pchanges
= =

+ − =∑ ∑                  [2] 

0Pchanges ≥                                        [3] 

The final objective function [1] now includes a 

penalty for every change in each decision variable between 
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a legacy and revised plan.  Together, constraints [2] and 

[3] measure the Hamming distance between legacy and revised 

plans.  This distance is penalized in the objective 

function. 

3.   Elastic (Ranged) Persistence for the Rotation and 
Repair Decision Variables 

When using elastic (ranged) persistent variables, each 

decision variable has an interval that it is encouraged to 

obtain.  This target interval for each decision variable 

will be based on its value from a legacy plan.  A linear 

penalty in the objective function is used to discourage any 

deviation from the target value but only applies outside 

the target interval.  Figure 4 helps illustrate this: 

 

A R
Target Interval

No Penalty

bb

Penalty
Excess violationDeficit violation

 

Figure 4.   Illustrating a Ranged Persistent 
Variable.   

Each decision variable has an upper limit (b ) and lower 
limit (b ) within which the decision variable can change 
without incurring any penalty.  Positive values for A 
or R are assigned a linear penalty. 

 

  32 



The upper and lower limit of each decision variable 

can vary by year based on a fraction of the target value.  

In this formulation, we seek to minimize the amount of 

turbulence between legacy and revised plans by providing 

acceptable regions for decision variables. 

We describe how to accomplish this in the Rotations 

model.  Decision variable, RBt,f,y, represents the number to 

rotate of TAMCN t within force f in each year y.  We use 

the value from each decision variable in a legacy plan 

(RBoldt,f,y) to provide the basis for the target interval for 

each decision variable.  We use this legacy value to 

determine our upper limit (b ) and our lower limit (b ) as 

follows: 

, , , ,(1 )t f y y tb RBoα= + f yld  

, ,, , (1 )y tt f yb RBoldα= − f y  

Here,  is the allowable fraction change to a decision 

variable in year y.  An alternate method for defining the 

upper and lower limit for each decision variable is to add 

and subtract a fixed number from each decision variable.  

This could be handled as follows: 

yα

, , , ,t f y t f yb RBold k= +  

, ,, , max (0, )t f yt f yb RBold k= −  

There are other possible ways to calculate a target 

interval, but we use fraction changes to decision variables 

in this thesis.  

We incorporate persistence with the following 

additions to the Rotations model: 
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Added Parameters: 

, ,t f yRBold  Rotation decision (RB) from a legacy 

plan, 

, , , ,,t f y t f yUpB LoB  , , , ,,t f y t f yb b  as shown above, 

RBpenalty  Linear penalty to encourage persistence 

in RB decision variables, 

Added Positive Variables: 

, ,t f yA  Difference penalized below lower limit 

, ,t f yb , 

, ,t f yR  Difference penalized above upper limit 

, ,t f yb , 

, ,t f yS  Difference allowed between upper and 

lower limits (target interval), 

yα  Allowable fraction change in year y, 

New Objective Function: 

Maximize 

, , , ,
, ,

* ( t f y t f y
t f y

Z RBpenalty A R− ∑ )+                      [1] 

Additional Constraints: 

, ,, , , , , , , , t f yt f y t f y t f y t f yRB A R S b+ − + =                [2] , ,t R f y∀ ∈

, ,, , , ,t f yt f y t f yS b b≤ −                           [3] , ,t R f y∀ ∈

 The final objective function [1] now includes a 

financial penalty for every change outside the target 
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interval.  Together, constraints [2] and [3] measure any 

change outside the target interval between legacy and 

revised plans.  This amount is penalized in the objective 

function.  

 In the Rotations model, we combine this formulation 

with Hamming penalties for the Pt,v,w decision variable.  We 

incorporate the same ranged elastic persistent 

reformulation for the RPRt,f,y decision variable in the 

Readiness model. 
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V. PERSISTENT RESULTS  

A.   RESULTS USING ELASTIC PERSISTENT VARIABLES 

Recall the original example used to illustrate 

turbulence between model solutions.  We solved DERO with 

the following set of yearly budgets for the active forces:  

Year Budget (millions) 

2002 $105.6 

(Reduced to $104.1) 

2003 $109.9 

2004 $73.3 

2005 $75.9 

2006 $76.7 

2007 $78.1 

Table 3. A budget reduction with persistence. 
After publishing a maintenance plan, the FY2002 budget 
is reduced by $1.5 million.  We can now use our 
persistent formulation of DERO to solve this revised 
problem.    

 

Now, we test the new elastic persistent formulation.  

This new persistent formulation will produce a revised 

maintenance plan that linearly penalizes any change between 

a legacy and revised plan.  In the Rotations model, we 

penalize exactly one dollar for each change.  A change in 

the Readiness model, which maximizes a weighted sum of 

readiness scores, is penalized one unit of readiness.  

Table 4 displays the suggested revision produced by the 

non-persistent DERO model.  The results using the 

persistent formulation are shown in Table 5.   
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  2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007
A0010 B0635 -2 2 E0726
A0043 -3 -3 B0730 -3 -36 0.3 38.7 E0727 1 
A0966 B1082 E0942
A1260 -1 1 B1226 E0946
A1440 B1298 -1 E0947
A1500 B1315 -2 2 E0948
A1503 B1580 -1 E0949
A1530 B2464 E0950
A2306 B2482 E0960 -8 -128 1 135 
A2635 -1 B2685 -4 E0961 -4
A7005 -1 C2032 -17 E0980 -37 21.8 15.2
A7025 D0080 E0998 -1 -20 21 
A7035 D0105 E1037
A7037 D0209 E1251 -12 -2 14
A7052 D0860 2 -1.9 E1313
A7055 -4 D0876 E1441 -1 3 2 -4 
A7058 D0877 E1460
A7072 D0878 E1475
A7500 D0879 E1836
A7590 D0880 -82 54.2 27.8 E1888 -1 1 -0.93 -0.58 -0.69
B0001 D1072 E3196
B0114 -1 1 D1134 1 -1 A0000
B0395 D1212 E0000
B0443 E0180 -11 11 E0001
B0589 1 -0.9  

Table 4. Non-persistent results after a budget 
reduction.   
Recall that, when the FY2002 budget was reduced from 
$105.6 to $104.1 million and resolved, these 56 (20 
major and 36 minor) changes occurred.     
  

 
2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007

A0010 B0635 E0726
A0043 B0730 E0727
A0966 B1082 E0942
A1260 B1226 E0946
A1440 B1298 E0947
A1500 -3 1 2 B1315 E0948
A1503 B1580 E0949
A1530 B2464 E0950
A2306 B2482 E0960 -1 1
A2635 B2685 E0961
A7005 C2032 E0980
A7025 D0080 E0998
A7035 D0105 E1037 -1 1
A7037 -1 1 D0209 E1251
A7052 D0860 E1313
A7055 D0876 E1441
A7058 D0877 E1460
A7072 D0878 E1475
A7500 D0879 E1836
A7590 D0880 E1888 -1.1 -1.5
B0001 D1072 E3196 -2 2
B0114 D1134 A0000
B0395 D1212 E0000
B0443 E0180 E0001
B0589  

Table 5. Persistent results after a budget reduction. 
Much of the turbulence shown in Table 4 has 
disappeared using the added persistent features in 
DERO.  This persistent revision suggests just 13 
changes with only one of them being major. 
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Suppose that the 13 changes specified in Table 5 are 

still too many.  We can then increase the linear penalty in 

order to further discourage turbulence between legacy and 

revised plans.  Consider increasing the penalty in the 

following manner.  In the Rotations model, we now penalize 

1,000 dollars for each change.  And changes in the 

Readiness model are penalized 1,000 units of readiness.  In 

this case, the number of changes is further reduced from 13 

down to 7.  Table 6 summarizes the results below: 

 
2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007

A0010 -1 1 B0635 E0726
A0043 B0730 E0727
A0966 B1082 E0942
A1260 B1226 E0946
A1440 B1298 E0947
A1500 -1 1 B1315 E0948
A1503 B1580 E0949
A1530 B2464 E0950
A2306 B2482 E0960
A2635 B2685 E0961
A7005 C2032 E0980
A7025 D0080 E0998
A7035 D0105 E1037
A7037 D0209 E1251
A7052 D0860 E1313
A7055 D0876 E1441
A7058 D0877 E1460
A7072 D0878 E1475
A7500 D0879 E1836
A7590 D0880 E1888 -1 -0.7 -0.8
B0001 D1072 E3196
B0114 D1134 A0000
B0395 D1212 E0000
B0443 E0180 E0001
B0589  

Table 6. Increasing the persistence penalty.  
The number of changes is further reduced from 13 in 
Table 5 to just 7 changes by increasing the penalty 
from one objective function unit per change to one 
thousand.  Increasing the penalty for changes is an 
effective way to reduce turbulence between legacy and 
revised plans. 

 

Incorporating elastic persistent constraints into DERO 

is an effective way to reduce the amount of turbulence 

between plans when the input parameters are only slightly 

changed between legacy and revised plans.  Also, the 

examples help illustrate how higher penalties can be used 
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to encourage tighter persistence.  Later, we explore how 

this reduction in turbulence affects the overall 

warfighting readiness of our revised plan. 

 

B.   RESULTS USING RANGED ELASTIC PERSISTENT VARIABLES 

In this section, we incorporate the elastic (ranged) 

persistent model.  Each decision variable now has an upper 

and lower limit of acceptable change based on a fraction of 

its value from a legacy plan.  A linear penalty in the 

objective function is used to discourage any deviation 

outside this safe interval.     

We solve DERO using ranged elastic persistent 

variables under the same conditions outlined in Table 3.  

In this example, we let  for all y and calculate 0.02yα =

b and b  as described in Chapter IV. 

Outside the target interval, we penalize for change in 

the following manner.  In the Rotations model, we penalize 

five dollars for each change.  And changes in the Readiness 

model are penalized five units of readiness.  The results 

of this formulation are as follows: 
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2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007
A0010 B0635 -1 1 E0726
A0043 -2 -2 B0730 -1 1 E0727
A0966 B1082 E0942
A1260 -1 B1226 E0946
A1440 B1298 E0947
A1500 -1 1 B1315 -1 1 E0948
A1503 B1580 E0949
A1530 -3 B2464 E0950
A2306 B2482 E0960 -6 6
A2635 B2685 E0961
A7005 C2032 -3 E0980 -3 -2 5
A7025 D0080 E0998 -3 3
A7035 D0105 E1037
A7037 -1 1 D0209 -3 3 E1251 -4 4
A7052 D0860 E1313 -1
A7055 D0876 1 -0.9 E1441
A7058 D0877 E1460 -1 1
A7072 D0878 E1475 0.1 -0.1
A7500 D0879 E1836
A7590 1 -0.1 -0.3 -0.3 D0880 -2 2 E1888 -1 1 -0.7 -0.8
B0001 D1072 E3196
B0114 D1134 A0000
B0395 D1212 E0000
B0443 E0180 -1 -1 2 E0001
B0589  

Table 7. Elastic ranged persistence.   
Clearly, there is more turbulence in this solution 
than we saw in the previous persistent model.  In this 
case, the revised plan suggests 46 changes, one of 
which is major.  
 

Major and minor changes between legacy and revised 

plans are defined as before.  Because our targets are now 

intervals vice points, a revised plan using ranged elastic 

persistence can exhibit more turbulence due to our 

definitions of major and minor changes. 

When the allowable change ( ) equals zero, elastic 

ranged persistence reduces to elastic persistence.  If 

allowing  for all y produces a revised plan that is 

too turbulent, we instead let  and  for all 

remaining y.  In this case, we are penalizing linearly for 

any change in FY2002 and encouraging target intervals in 

the remaining years.  Using the same penalties as before, 

the results are as follows: 

yα

2002 =

0.02yα =

0α 0.02yα =
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2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007
A0010 -1 1 B0635 E0180 -1 1
A0043 -1 B0730 E0726
A0966 B1082 E0727
A1260 1 B1226 E0856
A1440 B1298 E0942
A1500 -3 1 2 B1315 E0946
A1503 B1580 E0947
A1530 B2085 E0948
A2306 B2464 E0949
A2635 B2482 E0950
A7005 B2685 E0960
A7025 C2032 E0961
A7035 D0080 E0980 2 -2
A7037 D0105 E0999
A7052 D0209 E1037
A7055 D0235 E1251
A7058 D0860 E1313
A7072 D0876 E1441
A7500 D0877 E1460 -0.8 0.8
A7590 D0878 E1475 -0.2 0.2
B0114 D0879 E1836
B0395 D0880 E1888 -0.74 -1.47 -0.83
B0443 D1072 E3196
B0446 D1134
B0589 D1212  

Table 8.  Improved ranged persistence. 
This revised plan was obtained by linearly penalizing 
any change in the first year while allowing a two 
percent change in the remaining years. The revision 
exhibits 18 changes (two major) and represents a 
feasible alternative to the elastic persistent 
solution shown in Table 5. 

 

Rather than following advice as strict as that 

produced by the elastic persistent model (shown in Table 

5), this method can provide a decision-maker an alternate 

revised plan.  In conjunction with the elastic persistent 

model, this can be a valuable tool. 

  
 
C.   USING PERSISTENT DERO WITH A BUDGET INCREASE 

We have illustrated turbulence in DERO resulting from 

a budget reduction and have shown how to mitigate it using 

elastic persistent constraints.  In this section, we 

explore how an increasing budget affects the amount of 

turbulence in DERO. 
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In this example, the projected budget changes 

according to the following table:  

 
Year Budget (millions) 

2002 $105.6 
(Increased to $109.6) 

2003 $109.9 

2004 $73.3 

2005 $75.9 

2006 $76.7 

2007 $78.1 

Table 9. An increasing budget example.   
After publishing a maintenance plan, depot managers 
receive an additional $4 million for FY2002.    

 

When this revision is made and solved by DERO, the 

suggested changes to the original plan are shown in Table 

10.  Because we are revising for a budget increase, 

revisions might better be restricted to augment legacy 

repairs or initiate new ones, rather than abandon any prior 

planned activity.  This is a common sense consideration 

that might not be absolutely mathematically optimal. 

If we modify the persistent DERO formulation so that 

we only penalize for negative changes to our decision 

variables between legacy and revised plans, we obtain the 

suggested changes to the legacy plan shown in Table 11.  

Clearly, the persistent DERO formulation can produce an 

acceptable revision under these conditions. 
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2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007
A0010 B0589 1 -0.9 E0726
A0043 -2 -3 B0635 E0727 5
A0248 1 B0730 3 -0.3 E0856 1
A0966 B1082 E0942
A1260 1 B1226 2 -2 E0946
A1440 B1298 7 E0947
A1500 B1315 -2 2 E0948
A1503 B1580 -1 E0949
A1530 B2464 E0950
A2306 B2482 E0960 15 277 1 -293
A2635 -1 B2685 E0961 2
A7005 6 C2032 -180 -36 E0980 18 -18
A7025 D0080 77 -0.4 -56 -20.6 E0998 25 -1.8 -23.2
A7035 D0105 E1037
A7037 D0209 E1251
A7052 D0235 1 E1313
A7055 -1 3 D0860 203 -46 -46 -46 E1441 2 2 -4
A7058 D0876 E1460 -1 -24.2 25.2
A7072 4 D0877 E1475 -7 6 12
A7500 D0878 E1836
A7590 D0879 E1888 1 -1 2 0.5 -0.4
B0001 D0880 58 -30.2 -27.8 E3196
B0114 D1072
B0395 1 -1 D1134 1 1 -2
B0443 -1 1 D1212
B0446 1 1 12.7 14 E0180 6 -6  

 
Table 10. Turbulence following a revised, increased 
budget using DERO.  
Just as we saw in the case of a budget reduction, non-
persistent DERO exhibits a great deal of turbulence 
after a budget increase. 

 
 

2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007
A0010 B0635 E0180
A0043 B0730 E0726
A0966 B1082 E0727
A1260 B1226 E0856 1
A1440 B1298 E0942
A1500 B1315 E0946
A1503 B1580 E0947
A1530 B2085 1 E0948
A2306 B2464 E0949
A2635 B2482 E0950
A7005 6 B2685 E0960 15
A7025 C2032 E0961
A7035 D0080 103 E0980
A7037 D0105 E0999 20
A7052 D0209 E1037
A7055 D0235 3 E1251
A7058 D0860 239 E1313
A7072 D0876 E1441 1
A7500 D0877 E1460
A7590 D0878 E1475 0.72
B0114 D0879 E1836
B0395 D0880 59 E1888 0.23
B0443 D1072 E3196
B0446 0.7 D1134
B0589 1 -0.9 D1212  
  

Table 11. An increasing budget using persistent DERO.  
Without fixing any variables, we can use the 
persistent DERO formulation to show the optimal way to 
spend the additional $4 million in FY2002 without 
reducing any legacy repair activities. 
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D.   WARFIGHTING READINESS AND TURBULENCE 

Persistence restricts the planning model.  Elastic 

persistent and ranged elastic persistent constraints are 

effective ways to reduce the amount of turbulence between 

legacy and revised plans, but reducing turbulence can 

adversely affect the warfighting readiness of a revision.   

To assess the effect of persistent restrictions on 

warfighting readiness, we solve the Rotations model.  We 

then modify the Readiness model to include a constraint 

that limits the overall turbulence between legacy and 

revised plans to a fixed number of allowable changes.  By 

incrementally lowering the number of allowable changes and 

capturing the warfighting effectiveness for each plan, we 

can see how limiting turbulence affects warfighting 

readiness.  The results are shown in Figure 5. 
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Figure 5.   Tradeoff between Warfighting Readiness 
and Turbulence.   
The Readiness model wants to make numerous changes in 
order to maximize the warfighting readiness of its 
revision.  Restricting the number of changes too much 
can significantly degrade the overall warfighting 
readiness of that revision.  Each point on this graph 
represents the objective function value of an integer 
linear program solved with a relative integrality 
tolerance of 0.01%: this graph is non-monotonic because 
each plan has a slight integrality gap. 
 

   

In terms of the warfighting readiness, DERO wants to 

suggest a revised plan that differs greatly from the legacy 

plan.  We can limit the turbulence between legacy and 

revised plans and still maintain a revision with an 

acceptable level of warfighting readiness.  However, once 

we limit the amount of turbulence to less than 32 changes 

in this example, the warfighting readiness of our revised 

plan begins to drop significantly. 
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Figure 5 shows an important feature of persistence.  

While limiting turbulence between legacy and revised plans 

is desired, a persistent revision can exact a price in 

terms of warfighting readiness.  A decision maker must 

ultimately determine the appropriate balance between the 

tolerable amount of turbulence between plans and its 

influence on warfighting readiness.  In Figure 5, about 32 

changes between legacy and revised plans appear to have a 

modest impact on warfighting readiness.  Fewer than 32 

changes will reduce the warfighting readiness of the 

revised plan too much. 
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VI. AUGMENTING OPTIMIZATION WITH A HEURISTIC  

A.   SENJU AND TOYODA HEURISTIC  

Senju and Toyoda [1968] describe a simple method that 

quickly suggests a near-optimal portfolio of proposals from 

a large number of possible candidate proposals, where their 

choices are restricted by consumption of a number of 

limited resources.  Their initial application selects an 

investment portfolio subject to budget constraints.   

Their article describes an efficient way to 

approximately solve this type of complex problem.  Their 

method solves the following R-Knapsack optimization 

problem: 

Indices: 

p   Candidate proposals ( 1, 2, ...,p P= ), 

r    Limited resources ( ), 1, 2, ...,r R=

Data: 

pbenefit  Incremental benefit of proposal p, 

ravailable  Limit on availability of resource r, 

,p ruse   Proposal p would use this amount of  

resource r, 

Decision Variables: 

pABLE  Binary decision variable to select  

proposal p, 
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Formulation: 

 Maximize  ∑                        [1] p
p

benefit ABLEp

Subject to 

  ∑     ∀ ∈  [2] ,p r p r
p

use ABLE available≤ r R

                   {0,1}pABLE ∈ p P∀ ∈  [3] 

Verbal Formulation: 

The objective function [1] expresses the sum of the 

benefit of the selected proposals.  Constraints [2] ensure 

that the proposal selections meet the resource constraints.  

Constraints [3] ensure that each proposal selection is 

binary. 

Senju and Toyoda use a deletion heuristic that begins 

by adding all of the proposals to the portfolio.  If any 

resource is over-allocated, they describe how to calculate 

an effective gradient for each proposal in the portfolio.  

The effective gradient represents the amount of profit lost 

per resource gained if each proposal is deleted from the 

portfolio.  Proposals are then deleted from the portfolio 

starting with the proposal with the smallest effective 

gradient.  Senju and Toyoda continue deleting proposals in 

this order until a feasible portfolio exists.   

Pfarrer [2000] uses a Senju-Toyoda heuristic to solve 

a procurement problem for the United States Special Forces 

over a ten-year planning horizon.  His results show the 

effectiveness of using this heuristic. 
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B.   USING A FAST SENJU-TOYODA HEURISTIC IN LIEU OF AN 
INTEGER LINEAR PROGRAM 

Following Senju and Toyoda [1968], we develop a 

heuristic that quickly suggests a near-optimal portfolio of 

TAMCNs to fund from a large number of possible TAMCNs, 

where our choices are restricted by their consumption of a 

limited budget.  Unlike the already-discussed optimization 

techniques, which provide a plan that maximizes readiness 

across the entire planning horizon, our heuristic is myopic 

– only maximizing readiness one year at a time.   

As described by Senju and Toyoda, we calculate the 

effective gradient for each TAMCN.  But, instead of using a 

deletion heuristic, we use an addition heuristic that adds 

TAMCNs to our portfolio in the order of the highest 

effective gradient.  Although DERO is different from the 

Knapsack model solved by Senju and Toyoda, we are able to 

generalize their approach to solve the Readiness model.   

We begin with the first fiscal year.  We first 

determine the Ready-For-Issue (RFIt) quantity for each TAMCN 

t as follows: 

  t t t t tRFI SRFI ISSUE USR RPR= + − +  

As before, the decision variable for our model is RPRt, 

which represents the number of TAMCN t to repair.  

Initially, these variables are all assigned a value of zero 

(equivalent to not repairing any TAMCNs).  We then seek to 

incrementally add TAMCNs to our portfolio in the order of 

the highest effective gradient for each TAMCN.   

As in DERO, we calculate the effectiveness rating as 

follows: 
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  Effectiveness Rating = t

t

RFI
WMR

. 

We use this rating to determine the readiness score 

(SCOREt) of each TAMCN t according to the same piece-wise 

linear function used in DERO. 

We calculate the warfighting readiness (readinesst) 

gained from incrementally increasing the RPRt decision 

variable for each TAMCN t.  We then estimate the effective 

gradient (benefitt) of increasing RPRt for each TAMCN t.  

The effective gradient represents the amount of readiness 

gained per budget lost.  We calculate the effective 

gradient as follows: 

  t
t

t

readiness readiness gainedbenefit =
cost resource lost

= . 

The heuristic incrementally increases the RPRt decision 

variable for the TAMCN t with the largest effective 

gradient. It then re-computes these calculations and 

repeats additions until a feasible portfolio results within 

our budget constraints.  Once our portfolio has been filled 

in this manner, it may be possible to add additional TAMCNs 

with the remaining budget.  The pseudocode for the 

algorithm is as follows: 
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PSEUDOCODE FOR SENJU-TOYODA HEURISTIC 
 
T  – set of TAMCNs t 
Rt – number of TAMCN t to repair 
Gt – effective gradient  
    (readiness gained if Rt -> Rt + 1 per repair cost) 
Ct – cost to repair TAMCN t 
 
begin 
 B:= available budget 
 Rt:= 0 for all t in T 
 Calculate Gt for all t in T 
 i:= argmax(Gt) 
 while B > 0 and Ci < B do 
 begin 
  Ri: = Ri + 1 
   B: = B - Ci  

recalculate Gi 
   i: = argmax(Gt) 
 end; 
 maxbenefit: = 1 
 while maxbenefit > 0 do 
 begin 
   maxbenefit: = 0 
 for each i in T do 
 begin 
  if Ci < B and Gi > maxbenefit then 
  begin 
   maxbenefit: = Gi 
   point: = i 
  end; 
 end; 
 if maxbenefit > 0 then 
 begin 
  Rpoint: = Rpoint + 1 
  Recalculate Gpoint 
   B: = B - Cpoint 

end; 
 end; 
end; 

 
Figure 6.   Pseudocode for Implementing the Senju-
Toyoda Heuristic to Solve DERO. 
Each TAMCN is initially assigned zero repairs.  We 
incrementally add TAMCNs to our portfolio in the order 
of the highest effective gradient until we are unable 
to afford the next most attractive TAMCN.  It may be 
possible to add additional, less-costly TAMCNs to our 
portfolio with the remaining resources.  Therefore, we 
spend any additional resources on the TAMCNs with the 
highest effective gradient that we can afford until our 
budget is depleted. 
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The resulting RFIt for each TAMCN t in the first fiscal 

year becomes SRFIt (the starting RFI quantity) for the 

second fiscal year.  We repeat this cycle until our 

heuristic solves all six fiscal years. 

When we compare the overall warfighting readiness 

produced by this heuristic to DERO’s results, we observe 

the following: 

DERO versus Senju-Toyoda Heuristic
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Figure 7.   Warfighting Readiness using our 
Heuristic. 
Initially, the heuristic suggests a depot-level 
maintenance plan with a warfighting readiness that 
exceeds DERO’s plan.  By the third fiscal year, the 
overall warfighting readiness of the two methods is 
equivalent.  The last three years show the myopic 
nature of our heuristic as DERO produces a plan with a 
better warfighting effectiveness.    
 

Our myopic heuristic eventually lags behind DERO’s 

omniscient plan because it is unable to look ahead and plan 

for future requirements in the depot-level maintenance 
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plan.  For example, this heuristic will not choose to 

repair a TAMCN in a current year in order to satisfy a 

demand in a future year.   

Our Senju-Toyoda heuristic is different from DERO.  

While both models maximize readiness across the planning 

horizon, DERO provides additional stratification decisions 

not addressed by the heuristic.  Our Senju-Toyoda heuristic 

does not consider these embellishments. 

The primary benefit of our heuristic is its ability to 

work on readily available software.  The entire 

implementation of DERO, including both the Rotations model 

and our heuristic, is done with EXCEL.  This is easy to 

use and quickly provides a depot-level maintenance plan. 

Persistence is easy to incorporate in our heuristic.  

We have described how to implement an addition heuristic 

based on the highest effective gradient of all TAMCNs.  We 

need only to augment this gradient with persistent terms 

just like those presented in the persistent integer linear 

programming.  Calculating the effective gradient for a 

deletion heuristic is also straightforward.   Under budget 

fluctuations, we can easily add or delete TAMCNs from our 

portfolio based on the appropriately calculated effective 

gradient. 

Although the Senju-Toyoda heuristic performs well, and 

very quickly, on these test cases, there is no guarantee 

that it will always work so well.  Further, the integer 

linear program optimization offers a quantitative 

assessment of solution quality – an absolute upper bound on 

readiness that might be achieved beyond the current plan 

suggested – while the heuristic gives no such advice at 
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all.  The heuristic, if operated in isolation, offers no 

clue to the quality of its solutions. 
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VII. CONCLUSION AND FUTURE AREAS OF STUDY 

A.   CONCLUSION 

Incorporating the persistent constraints suggested in 

this thesis is an effective way to mitigate the amount of 

turbulence in DERO when the input parameters are only 

slightly changed from instance to instance.  The added 

features are shown to be effective when a budget change 

occurs after a maintenance plan is published.  Clearly, 

these added features provide DERO with greater flexibility 

and improve the face validity of the model. 

While limiting turbulence between a legacy and a 

revised plan may appeal, we have shown that a persistent 

restriction can exact a price in terms of warfighting 

readiness.  A decision maker must ultimately determine the 

appropriate balance between the allowable amount of 

turbulence between a legacy and a revised plan and that 

revision’s warfighting readiness.  We have described an 

effective way to develop this decision tool and have shown 

what it looks like for one data set. 

 Finally, we introduce a heuristic planning tool to 

assist in depot-level maintenance planning.  Our heuristic 

is easy to use, quickly produces a depot-level maintenance 

plan, and works on readily available software.  We have 

greatly reduced the need for expensive licensed software 

and experienced operators.  When used in conjunction with 

DERO, this tool can provide added insight. 
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B.   FUTURE AREAS OF STUDY 

 While this thesis demonstrates how to incorporate 

persistent features into DERO, the same idea can be readily 

applied to other optimization-based decision support aids 

used in a manner similar to DERO.  When input parameters 

are only changed slightly between model solutions, the 

addition of persistent features can provide greater 

flexibility and improve the face validity of a turbulent 

model.   
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